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Abstract

In the light of renewed evidence for the existence of a 17 keV neutrino,
we study the possible mass patterns for the charged and the neutral
leptons, in the context of a generalized “seesaw”-type of model, which
implements a horizontal U/(1)4 Peccei-Quinn symmetry. Under some
general assumptions concerning the structure of the mass matrix we
find that the mass hierarchy between the first two generations of charged
leptons and the third one is explained in terms of the natural scales of
the model. At the same time, with the additional assumption of the
proportionality of Majorana- and Dirac-type couplings, the spectrum of
the neutral leptons contains two very light Majorana neutrinos, such. as
required by the MSW interpretation of the solar neutrino deficit, and the

17 keV “Simpson” neutrino. A cosmologically consistent decay mode of
this neutrino is into a v, and the axion.

(June 1991)



1 Introduction

The recent 3-decay experiments of Simpson and Hime [1] have revived the possibility
of a 17 keV neutrino state with a 10% admixture in the amplitude of ¢,:

v, =cosfuy +sinfrg, (1)

where v5 is the 17 keV component with sinf ~ 0.1 and v, is one or more light com-
ponents with a mass less than ten eV. The particularity of the so-called Simpson
neutrino has stimulated a large activity in the construction of models for neutrino
masses [2-11]. As has been pointed out in the literature, vs must be either a Dirac
or a pseudo-Dirac state, otherwise its contribution to the “effective” mass of the
electron neutrino in neutrinoless double beta decays would be ~ mgsin?8 ~ 170
eV, in contradiction with the experimental upper bound of a few eV [12]. From
neutrino oscillation experiments [13] one also knows that vs cannot be the domi-
nant component of v,. Moreover, choosing the resonant oscillation mechanism of
Mikheyev-Smirnov-Wolfenstein (MSW) [14] as a good solution for the solar neu-
trino problem [15], one should expect that, in general, at least two neutrinos, say
v, the dominant component of v., and v, are lighter than ~ 10~2 eV. Therefore,
v, cannot be the Simpson (tau) neutrino and may be identified, say, with the dom-
inant component of v,. Hence, the most natural scenario for implementing both,
the Simpson neutrino and the MSW mechanism, is one with very light electron and

muon neutrinos and a Dirac tau neutrino of 17 keV mass.

For Majorana neutrinos, the seesaw mechanism [16] provides an explanation
for the smallness of their mass compared to the masses of the charged fermions by
introducing into the Standard Model extra heavy iso-singlets, e.g., the right-handed
neutrinos. The suppression of the neutrino mass can be easily understood from the
perturbative diagoﬁa.]iza.tion of the neutrino mass matrix and works obviously only
if the mass of the heavy state is non-zero. Correspondingly, in the case of more
than one generation, it was noticed that part of the specirum can be protected
from getting seesaw suppressed masses by assuming a singular mass matrix for the
heavy singlet states [17]. This idea has been recently used by some authors for

implementing the rather heavy Simpson neutrino in their models [2,3,9].

Similarly, in a two-generation toy version of the Universal Seesaw Model (USM)
[18-22], which is essentially the generalization of the seesaw idea to all fermions, the
singularity of the mass matrix for.the extra heavy singlets (for details, see Section 2)
was used to protect the second-generation fermion from having a seesaw-suppressed
mass [18]. This provided a natural explanation of the mass hierarchy between the

two generations of charged fermions. However, it was noticed that this protection



mechanism did not work for the two neutrinos, for which the mass scale turned
out to be the same. This different behaviour between the two sectors is due to the

presence of Majorana masses for the neutral leptons.

In this paper we study the lepton sector of the USM for the realistic case of three
generations assuming the singularity of the mass matrix for the heavy singlets. In
section 2 we review the main features of the USM. In sections 3 and 4 we discuss the
mass spectrum and the hierarchy pattern of the charged and the neutral leptons in
the most general scenario. Then, in section 5, assuming that Majorana- and Dirac-
type couplings scale proportionally, we obtain a quite different neutrino spectrum,
which contains the Simpson neutrino and the two light states required by the MSW
solution of the solar neutrino problem. Finally, in section 6 we derive the lifetime

of the 17 keV neutrino and check the consistency of this spectrum with cosmology.

2 The Universal Seesaw Model

As indicated in the Introduction, one of the attempts to understand the mass-
hierarchy between the three generations of quarks and leptons is the Universal
Seesaw Model (USM) [18-22], first proposed by Davidson and Wali [19], which
is essentially an extension of the well known neutrino-seesaw mechanism [16] to
all fermions. It is naturally implemented in the context of left-right symmetric
theories based on the SU(2)1 ® SU(2)r ® U(1)s-1 gauge group, by introducing,
for each left-and right-handed fermion fi(g), a new heavy SU(2)r ® SU(2)x singlet
Fr(n), which mimics the role of the right-handed neutrino of the standard (neutrino)
seesaw scenario. In other words, in the USM each ordinary fermion (f) has a singlet

heavy partner (F'), with the same electric and color charges.

The Higgs sector is kept minimal; in fact, at the one-generation level there
are only one left- and one right-handed Higgs doublets !, ¢1(2,1); and #g(1,2)
with vacuum expectation values vz and vg, which couple the ordinary fermions to
the heavy singlets. The heavy singlets themselves get their masses from an extra
singlet Higgs field, ¢(1,1)o, whose vacuum expectation value, x, can also induce
the spontaneous breaking of the left-right symmetry a la Chang-Mohapatra-Parida
{23]. In the multi-generation case, x can be identified with the Peccei-Quinn scale
[24]. Moreover, as was shown in ref.[20], the Higgs potential allows, within a certain
range of parameters, an absolute minimum which corresponds to a hierarchy of the

VEV’s: vp € vg € x. The diagrams which generate fermion masses at tree level

1We adopt the standard notation, where (i, j)i label respectively SU(2), SU(2)r representa-
tions, and k is the quantum number of U(1)p_f.



in the context of the USM are shown in Fig.1 of ref.[21]. Notice that the standard
source for the generation of Dirac masses in usual left-right symmetric theories
[25], namely the bi-doublet Higgs field, ¢(2,2)o, as well as the standard sources
of Majorana masses for the neutrinos, the left- and the right-handed triplet Higgs
fields Ag(3,1)-2 and Ag(1,3)_,, are absent at the lowest order. All these fields,
behaving as bilinears of the Higgs doublet fields present in the model, are however

recovered as effective fields at low energy.

As a consequence of our choice for the Higgs sector, the tree-level mass matrix
is of the seesaw-type, with Dirac-type mass terms in all sectors plus Majorana-type
mass terms in the neutral lepton sector. It is then easy to check, that for one
generation, while the masses of the ordinary up- and down-quark and the charged
lepton are m; ~ vyvr/x and therefore are suppressed with respect to the weak scale
(v ~ Mw,) through the smallness of the vg/x ratio, the standard neutrino mass
m,r ~ vi/x is even more suppressed. In particular one recovers the usual relation
of the ordinary seesaw model m,z m,p ~ mf, which explains the suppression of the
neutrino mass with respect to the electron mass, through the largeness of the mass

of the right-handed neutrino, m,r ~ v}%/x.

When generalizing this model to more than one generation, care has to be taken
of those fermions, like the top quark, whose mass is of the order of the electroweak
scale. In order to protect them from getting a seesaw-suppressed mass, in ref.[18]
an axial (global) U(1)4 horizontal symmetry - broken at a very high scale - was
implemented, having the nice feature that it could be identified with the Peccei-
Quinn symmetry, which gives a solution to the strong CP problem [24]. The role
played by this new symmetry is to distinguish the different families, by assigning
to each of them a different quantum number: x; for the ordinary fermions and y;
for the singlets of the i-ih generation. Furthermore, since now a Higgs field and
its charge-conjugated field, having opposite U(1)4 charges, are distinguished, the
Higgs sector is doubled, and one has two left- and two right-handed doublet Higgs
fields, whose vacuum expectation values are assumed to be equal in the left and the
right sectors [26] respectively 2, and their U(1)4 quantum numbers can be fixed,
without any loss of generality, to be +1 (see Tab.l of ref.[20]). Then, the U/(1),
charge of the Higgs singlet field ¢ is, for a suitable choice of the U(1)-invariant
Higgs potential [21], equal to +2. In order to determine the non-zero entries of the

mass matrix it is useful to introduce the matrix @ of the U(1)4 quantum numbers,

2This assumption can be justified by the study of minima of a general (left-right symmetric) Higgs
potential involving four Higgs doublets (as in our model}, with additional discrete symmetries. The
minima occur only when vr; = vr2, vp1 = vg2 [26]. In this paper we adopt the following definitions:
VL1 = VL2 = ’HL/‘\/E = (4\/§GF)_1/2 ~ 123 GeV, and vp; = tga = 'UR/\/E.



which in the basis (f;, F;), has the general form:

X L

where Xi; = 2; 4+ 25, Ly = @i + y;, Rij = 3 + 2, ¥i; = v; + y;. Then, the non-
vanishing mass terms in the mixed f — F sectors, My and Mg, will correspond to
the entries L;; = +1 (R = LT). This is the only case where we have an allowed, i.¢.,
U(1)-invariant, fermion-Higgs coupling. As already stated above, the absence of a
Higgs field transforming as a bi-doublet under the left-right symmetric group, tells
us that there cannot be Dirac masses involving the ordinary fermions only. On the
other hand, non-vanishing entries of the mass matrix for the singlet fermion fields
will correspond to Y;; = £2, since the U/(1)4 charge of o is +2.

From this discussion it follows that the mass matrix for the charged fermions is

0 M
M=(MR Mf), ®)

where M, is the mass matrix for the heavy singlet fermions and M L(R) are the corre-

of the seesaw-type:

sponding matrices coupling the ordinary charged fermions with the heavy singlets.
With the conditions specified so far, there are still several possible forms for the
sub-matrices My and Mpg. In what follows, we restrict ourselves to the case where
both Mp and Mg are of the Fritzsch-type [27], since this Ansatz has proved suc-
cessful in the study of the Kobayashi-Maskawa mixing matrix in the quark sector

[20,21]. Then, for three generations:

0 Yiovg 0
My = 73 Yavr 0 Yaur |, (4)
0 Ysvp Yaswp
and Mr = Mr(vy < vg). In equ.(4) we have taken into account the fact that
in two-doublet models with both Higgs fields developing the same VEV, one has
v; = vy = v//2, v being the “effective” vacuum expectation value responsible for
the mass of the gauge bosons, Mw = gv/+/2, where v = (v;% ++ v,2)//2, The Yukawa
couplings, Y;;, are assumed to be real, left-right symmetric, and symmetric in the
generation space, i.e., Yi; = ¥;. The matrix of the U(1), quantum numbers, Q,
is then uniquely determined in terms of a single integer parameter x, which can be
chosen such that the determinant of M, is either zero (singular case) or different

from zero (non-singular case).

The non-singular three-generation model for quarks was studied in refs.[20,21],
where the mixing angles were determined in terms of the quark masses. In partic-

ular, it was shown [21] that all flavour changing neutral current processes (FCNC)

4



mediated by the two neutral gauge vector bosons, Z,° and Z,°, being proportional
to vi/{vrx)?, are highly suppressed. However, as was first suggested in ref.[18],
the so-called singular models (det M, = 0) are more suitable for understanding the
origin of the generation mass hierarchy. We shall therefore restrict our discussion

of the three-generation lepton sector to this case only.

3 The charged lepton sector

As we have shown in the previous section, in the USM model the charged lepton
mass matrix is of the seesaw-type, equ.(3). For three generations the submaitrices
My and Mg, which are of Fritzsch-type, equ.(4), can be written in the form:

0 L 0
My=1L 0 aL |, (5)
0 al &L

and

MRZ'ML(LHR),

respectively. The mass matrix for the heavy singlets, M,,, which must be singular in
order to give rise to a mass hierarchy between the generations, depends on a single
integer parameter z, which characierizes the Peccei-Quinn fermion charges [20,21].
In view of the interesting results that we obtain in the neutral lepton sector, section

5, we choose the model corresponding to @ = 5, which gives the following form for
M,:

0 0 K
M,=|o0 0 0 |. (6)
K 0 0

In egs.(5) and (6) we have set: K = Y{Ex, L = Y}, vr/v2, R = Y, vr/V2, a =
Y5/Y, and b = Y[, /Y], the Y;E-'E’s being the left-right symmetric Yukawa-type

coupling constants in the charged lepton sector,

We now evaluate the mass eigenvalues, to see whether the charged lepton mass
hierarchy of the two-generation USM [18], is also present in the realistic three-
generation model. For simplicity we assume all mass matrices to be real, disregard-
ing the possibility of spontaneous CP-violation. Using the hierarchy of the VEV’s
(x > vg > vi), the secular equation of M, M:r % in leading order, is given by:

X = 2MK? MK - BEKR(1+0%) + M K'RI* (1 +a®)

3Notice that, since M, is not a hermitian matrix, one must cousider the properties of AM; M:r,
whose eigenvalues are the ferinion nasses squared.



— 2XK?L*R*(1+ a®)(2a® +b° +24a*) + L°R%" = 0. (7)

The roots of this equation can be found perturbatively using the fact that the coef-
ficients of the different powers of A scale differently with the VEV’s. For example,
as far as the heavy sector is concerned, equ.(7) shows that there are only two such
heavy states, A\s = Ag 22 K?, consistent also with the fact that the trace of MfM,T
is equal to 2K2. Analogously, for the light eigenvalues (A < K?), equ.(7) reduces,
up to terms of O(R*/K?), to a fourth order equation with only two non-vanishing

solutions:

)\32(1+02)L2 y A42(1+0,2)R2. (8)

This means that the remaining two solutions are much smaller than L?. They can
be found by substituting the approximate values for As, ..., A¢ in the expression for
the determinant of M;M, and its fifth-order invariant: Ag =~ Xs - ... - As(Az + Ay).
We then obtain the two light eigenvalues:

LRN?
A1z = (?) (2a2 +¢ F 2ava? +c) , (9)

where ¢ = % /(1 + a?).

These results show that the mass of the two lightest states is set by the scale
vrvp/x, while there is a mass gap of order vr/x to the next mass eigenstate, which
is proportional to vr. There are in addition three heavy mass eigenstates, which
correspond to the singlet states, one of order vg and two of order x. Hence, the
“singular” version of the three-generation USM yields a physical spectrum which is
the generalization of the one obtained in the simplified two-generation model [18].
In other words, as a result of the singularity of M,, one can naturally (7.¢., without
the need of any hierarchy among the Yukawa coupling constants) generate a mass
hierarchy of order vg/x between the first two generations and the third one. On
the other hand, the hierarchy between the first and the second generation requires
certain assumptions on the ratios of the Yukawa couplings. For example, we can
reproduce the mass difference between the electron and the muon by assuming
b/a < 1, in which case, due to the partial cancellation of the two terms in equ.(9),
we obtain: LR LR
= (i) . my~ = (2a) . (10)

K
These relations and the one for the tau mass:

m, ~VvV1+a*l, (11)

Me =

allow us to fit the charged lepton mass spectrum. If, for simplicity, we choose
a = 1(i.e., Y}, = Y}), from equ.(11) we obtain Y}, = ¥}, ~ 107?, while from the



mass ratio m,/m, we can determine R/K to be =~ 0.04. Furthermore, from the ratio
b=Yh/Y], ~ 2%/2 (m,/m,)*/* we obtain the value Y§; =~ 2 -107%. Notice that the
ratio of the Yukawa couplings scales only as the square root of the lepton masses,
so that the Yukawa couplings do not need to share the same level of hierarchy as

the masses.

Since, assuming Y}, ~ Y;£, the mass hierarchy between the second and the third
generation, B/ K = 0.04, reduces essentially to vr/x, and because the allowed range
of the Peccei-Quinn scale is 10'° — 10’? GeV, (see equ.(36) in the Appendix), also
the SU(2)r symmetry is broken at very high energies. The exact value of v, and
therefore of vp, will be fixed by studying the neutral lepton sector of the model.

4 The Neutrino Sector (general case)

Because of the presence of Majorana mass terms, the mass matrix for the neutral

leptons is a (12 x 12) symmetric matrix. In the basis:
{VerL, Yur, Vo1, Vor, Vop, Vips Nio, Nap, Nar, Nip, Nip, Nip)

it takes the form:

M,,=( 0 M) (12)

MT My
where
[0 dL 0 © cL 0 )\
dL 0 L ¢L 0 bL
L
Mo—| O L oL 0 BL e , (13)
0 ¢cR 0 0 dR 0
¢cR 0 bR dR 0 R
\ 0 BR eR 0 R aR
and
[ 0 0 RK 0 0 K
0 0 0 0 0 0
hK 0O
My — 0 0 0 0 (14)
0 0 K 0 0 RK |
0 0 0 0 0 0
\ K 0 0 AK 0 0 |

My is the singular mass matrix for the heavy singlets, corresponding again to the

choice z = 5. The parameters g, ..., h are ratios of Yukawa-type couplings analogous



to the ones defined in the charged lepton sector, but having in general different
values.

We proceed now with a semi-analytical evaluation of the neutrino mass eigen-
values exploiting the hierarchical structure of M,. We first notice that in the limit
L — 0, the rank of the full matrix M, reduces from twelve to nine, indicating
that in this limit three eigenvalues m;, ms, m3 — 0 compared to the scale of R
and K. When also R — 0, the rank of the residual matrix is four, leading to four
very massive states mo, mig, m11, m12 ~ O(K). The scale of the various eigen-
values can then be obtained by using some of the invariants of the mass matrix,
A, =TrM,, ..,A = Det M, for which we give only the leading term:

A, ~ fi,R°LS,

Ay ~ A KROILA,

A ~ foK?*RSIL?, (15)
Ay ~ foK*RS,

As ~ fsK'R*,

where f; are complicated functions of the Yukawa ratios, having small effects com-
pared with the scales of the symmetry-breaking. Since, in the present type of
models, the fermion mass hierarchy is not supposed to emerge from large differ-
ences in the Yukawa couplings, we shall ignore them. Using the fact that my s <

Mys5.67 K My 101112, We can write the following simplified expressions:

Alz ~ T TitaMs L2
Ay;n myma+ memg +mims K’
Aqy . Tumz + myms + mamg L_2 (16)
A my + my + ma K’
AIU L2
A_ ~ m1+m2+m.3~E,
9
A _ _ _ _ -1 R?
A_Z o~ (m41+m51+m61+m71+m31) N?{—.

From the first three relations one finds that the three lightest neutrino states have
the same mass scale: ”

My ~ Mgy ~ Mg ~ O(f), (17)
while from the ratio Ag/Ag and the information contained in the determinant
(Aiz)we find that one eigenvalue, my, is of order R?/K, four eigenvalues, ms, me,

my7, mg are of order R, and the remaining four are of order K.



Compared with the mass hierarchy in the charged lepton sector, the absence of a
hierarchical structure for the masses of the three standard neutrinos is an interesting
and surprising result of the singular USM scenario, entirely due to the presence of
Ma,jdrana masses for the neutral leptons. We can fix our scales by considering some
of the favoured theoretical scenarios for neutrino masses. One possibility would be
to account for the MSW solution of the solar neutrino problem, by choosing the

mass scale y in such a way that [14]:

2 _ 2 2
Amlz—mz—mlm(

r2\?

E) ~ (1072 eV)2. _ (18)
This would of course imply that all three neutrinos have a mass of order 1073 eV, so
that they cannot be a good candidate for the dark matter of the Universe [30]. The
other possibility would be to ignore the MSW requirements, assuming a different
solution for the solar neutrino problem [15], and choose the mass scale x such that
I?/K is of the order of ~ 50 eV, corresponding to a cosmologically interesting
scenario. In such a case one could then use the freedom in the choice of the Yukawa
couplings to satisfy the bounds on the “effective” electron neutrino mass derived

from the data on neutrinoless double beta decay [12].

Since in the neutrino sector we have no guidance of how to choose the Yukawa
couplings, a natural assumption could be to set them of the same order as the
ones we have obtained in the charged lepton sector (i.e., ¥¥ ~ 5.107%), and then
evaluate the Peccei-Quinn scale x. For the model that naturally satisfies the MSW
constraints, x turns out to be of the order of ~ 10'* GeV, which is in contradiction
with the present bounds, equ.(36); on the other hand, the cosmologically attractive
model gives a compatible value of x ~ 10'® GeV. One should however stress the
fact that this particular choice of the Yukawa couplings is by no means necessary,
in the sense that, in general, the Yukawa couplings characterizing the two lepton

sectors can be completely independent.

5 A 17 keV Dirac neutrino in the USM

In this section we discuss the neutrino sector in the case where the ratio of the
Majorana- to the Dirac-type Yukawa couplings is not arbitrary (as in the previous
section), but is constant in generation space. This assumption leads to a more
interesting neutrino spectrum consisting of the Simpson neutrino and two very
light neutrinos, with a mass consistent with the MSW interpretation of the solar

neutrino deficit.



Let Y;; and }};_,- be the Dirac- and the Majorana-type Yukawa couplings, defined
by equ.(13) with: L = Yi3vr/v2, R = Yasvr/v2, K = Ny, and @ = Yas/Yag,
b = }’23/1}23, c= le/f}s, d = 17'12_/1723, e = 1’},3/?23. The assumption that Y,-j/]-’;-,-
is constant, so that e/a = ¢/d = b, changes the leading behaviour of the following
invariants of the mass matrix M, with respect to equ.(15):

Ag ~ f9K3L2R4,
Ag =~ fBKzRa’ (19)

where the coefficients f;’s are generally different from those in equ.(15). Notice that
now Ay goes to zero with L, so that the rank of the matrix reduces to eight, instead
of nine, implying that four eigenmasses scale with L. As before, when also R goes
to zero, the rank further reduces to four, suggesting that four eigenvalues scale with
R and four with K. Using these considerations and building the ratios:

Aja L®

- X mimMzMamg ~

As K2’

A L?

_A: ~ m +m2+m3+m4~K-—-—R2, - (20)
Ag Rt

— ~ m ~—

A4 ™meg ¢ 117 Mg K2 y

where A, scales obviously as K*, it is possible to fully determine the structure of
the mass spectrum. From the first equation one sees that two eigenvalues, m, and
my, scale with L?/K, and two, ms and my, with L; on the other hand, the second
equation suggests that m; and m, must cancel to order K L?/R? < L. This implies
that the corresponding eigenstates, v; and vy, to a good approximation, behave as a
single effective Dirac state. Analogously, from the third equation and the vanishing
of the trace of M,, one obtains two eigenvalues ~ R?/K, and two ~ R, which again

combine into an effective Dirac state.

If we now identify the Dirac neutrino in our spectrum, whose mass is propor-
tional to L, with the 17 keV neutrino, we see that the Yukawa couplings, assuming
them all to be comparable to each other, are of the order of ~ 10~7. Furthermore,
since the two lightest states with mass ~ L?/K turn out to be essentially v, and
vy, in order to allow for the MSW mechanism, their mass must be in the range
m,, ~ m,, ~ 107* — 107 eV, from which we obtain x ~ 10° — 10'° GeV. In the
following we fix x = 10'° GeV, corresponding to the lower bound of the allowed
Peccei-Quinn scale. Using the ratio R/K from the charged lepton sector we then
get vp = 6108 GeV. Notice that if we would have chosen the electron and the
muon neutrino masses such as to account for the dark matter problem , ¥ would

have been too small to be identifiable with the Peccei-Quinn scale.
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Our numerical analysis, confirms the previous results on the mass spectrum and
suggests that the eigenvectors can be parametrized as shown in Tab.1 %. In partic-
ular, the two light Majorana states, 11 and vy, with a mass ~ 10~ eV, lie mainly
along the v, and the v, direction, respectively °. Their right-handed counterparts,
vs and vs, also Majorana states, have masses in the range 1 - 10 GeV. The remain-
ing part of the spectrum consists of four pairs of mass-degenerate states, which
combine into a set of four Dirac neutrinos. As can be seen from Tab.1, the 17 keV
Simpson neutrino is the ‘plus’ linear combination of v3 and v4, which is essentially
vy, with a small admixture of v., of order 10 %, while the ‘minus’ combination
consists of the two singlets Nap and Ny, Correspondingly, vz + 14 gives essentially
the right-handed tau neutrino, with a mass ~ 60 GeV. The two heavy Dirac states
with masses ~ 1 TeV, are combinations of the remaining four singlet fermions N;p,
and N;p, © = 1, 3. Their mixing with the left- and the right-handed states is of
the order L/K ~ 107® and R/K ~ 1072, respectively, so they essentially decou-
ple from the rest of the spectrum. Due to the smallness of the mixing between
the heavy right-handed Majorana states and vy, the effective mass in neutrinoless

double-beta decay is still consistent with the present experimental limit [12].

By expressing the interaction eigenstates in terms of the mass eigenstates, one
can write the three standard neutrinos in the following way:

Ve, =~ cosfvy +sinfus,

Vy, = U3, (21)
v, o~ —sinfy 4 cosfug,
where
Vs + 1y .
vg = 75 = sin fv,, + cosfu,, (22)

denotes the “Simpson” neutrino. For our next discussion of the neutrino decays it
is also convenient to define:

Y Ny — Nap Vg — Uy

Ny ==

2 \/E - ‘\/i ’ (23)

and Nt 4+ N
2L 2R by — I’g
= = . 24
V2 V2 (24)

N,

4We recall that in our model the fermion mass hierarchy does not arise from a hierarchy in the
Yukawa couplings. We have therefore chosen the Yukawa coupling ratios close to one.

®The mixing angle between v, and v, (or v, ) is always smaller than 0.01, while the mixing
with the corresponding right-handed states is less than L/R ~ 106,
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Notice that IV, is mass degenerate with the Simpson neutrino, with which it forms

an effective Dirac state. The same applies for N, and v

We would like now to comment on two points, which have been crucial for
obtaining the type of spectrum discussed in this section. The first one, is the re-
quirement that Majorana- and Dirac-type couplings, in general independent, should
be proportional. This assumption, which does not find a justification in our model,
might have a deeper meaning in the context of some more fundamental theory. The
second comment concerns our choice of a particular type of singular mass matrix for
the heavy extra singlets, namely, the one which corresponds to z=5, fixing there-
fore all the Peccei-Quinn charges. Interestingly, we have noticed that the type of
spectrum discussed above is a characteristic feature of the =5 case only, and does
not arise in the other (singular) models with different values of z. On the other
hand, we have found that the general behaviour shown in section 4 is essentially
independent on the parameter z, within, of course, the singular type of models.
These observations seem to suggest that, if the Simpson neutrino will turn out to

be real, the Peccei-Quinn charges of our model could be fixed.

6 Decay modes and neutrino lifetimes

According to the standard model of cosmology [31}, any {standard) neutrino with
:—")eV < m, < 2(5)GeV, must decay fast enough
such that its decay products do not produce a too large energy density for the

a mass in the range®: 97 . (

universe. In particular, for a weak interacting 17 keV neutrino, the cosmological

density bound results in the following constraint on its lifetime:

9\ 2
Tvs < (—) 1.5 - 10*? sec. (25)

b

The possibility that, in some model, the 17 keV neutrino could decay into three
light neutrinos at a rate consistent with equ.(25) has been considered in refs.[4,5].
As it 1s known, the radiative decay into a photon and a lighter neutrino has already
been excluded as the dominant decay channel from the SN8TA constraints and the
lack of distortion of the cosmic microwave background radiation {4]. Another decay
mode, which has been proved successful in most models, is into a Majoron and a
light neutrino [2,3,5,9). Since in the present model, U{1)p_1, is a local symmetry,
its breaking cannot be associated with the Majoron [32]. However, our model

SHere g, is the number of helicity states, and the five in the parenthesis refers to a Majorana
neutrino.
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has a global (horizontal) U(1)4 symmetry - the Peccei-Quinn symmetry - which
is spontaneously broken by the complex scalar field o at a large scale, x¥. The
associated pseudo-Goldstone boson is then the so-called “invisible axion”, 4 ~
Imo, {29]. In the singular USM considered in this paper, due to the structure of
the mass matrix My, equ.(14), the axion couples at tree level only to the heavy
singlets N, and N3 (Fig.3). An effective diagonal coupling of the axion to the
ordinary charged fermions of the standard fype: Ef FrsfA [33] is generated by the
two diagrams in Fig.1. Assuming that the mass of the two pseudoscalar Higgs fields
H? and HY is of the order of vg 7, and using for the coupling of the cubic interaction

¢242 A the scale obtained in the Appendix: v ~ v}/x, these diagrams give:
L?L g gl

2 VLYRY =

~ T F
Y MFM%f”!sz— " frsfA. (26)

We recall that according to the results given in Section 3, for the first two generations
the mass of the heavy singlets is Mr ~ Yx and the mass of the ordinary fermions
is my ~ Yvyogr/x, while for the third generation My ~ Y vg and my ~ Yvp. In
addition to the diagrams of Fig.1, however, there are additional contributions to the
coupling of the axion to the second generation from the type of diagrams shown in
Fig.3, which give an overall diagonal coupling to the charged fermions of the more
general form: (m;/x) fa(a + Bvs)f: A, where & and 8 are constants.

The decay of the left-handed tau neutrino into a left-handed electron neutrino
and the axion proceeds through the graph of Fig.2. Basically, what happens is
that v, which, up to a small mixing with v,,, is a linear combination of the
mass degenerate states v3 and vy, decays through its orthogonal mass-degenerate
eigenstate N,. The axion couples to N, and v via its mixing with the pseudoscalar
Higgs fIf, as discussed in the Appendix. The resuliing lifetime of the Simpson
neutrino, for y ~ 10!° GeV, is:

32w (\/EM;)Z 32 ( X

m, Yvry m,, \M,,

T r

r(vr = v A) =

2
) ~ 1.3-10"%sec., (27)

where we have used My = vg, v = v4/x, and set m,, = Yvr/+v/2. This value
of the v, lifetime is still compatible with the cosmological limit, especially if one
takes into account the uncertainties in the knowledge of the parameters used above.
Moreover, we notice that with such a lifetime, the v,’s from the SN8TA could not
have produced any delayed v, signal in the Kamiokande detector [10].

"These pseudoscalars are the left-right symmetric generalization of the single pseudoscalar present
in the usual two-Higgs doublet models. A preliminary study of the Higgs sector, which will be
discussed elsewhere, suggests that our choice of the pseudoscalar masses is consistent with the Higgs
potential and the hierarchy of the VEV’s,
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For completeness, we give also the lifetime of the right-handed states, though we
think that they might be allowed to be stable by cosmology, since they decoupled
at a very high temperature, T' ~ 1 TeV. The decay of the right-handed tau neutrino
proceeds through a diagram similar to Fig.2, where N, is replaced by N,, while v.n

decays through the diagram shown in Fig.4. The corresponding lifetimes are:

(g — Vet A) > T(vrp — ver A) (M) ~ 3.8-10°sec, (28)
YrR

T(ver — VerA) =~ 1T(Vpr — verA) (mm) ~ 9.2.10°sec, (29)
mueR

where we have used m,_, = Yvg/v2 = 60 GeV and m,,, = Yv%/2x = 2.5 GeV .
The right-handed muon neutrino gets equal contributions from the type of diagrams
shown in Figs.3 and 4, resulting in a lifetime:

2
A A ~ 107
o = vind) = (vR) (m,,,ﬂ) ~ 77107 sec, (30)
where we have used the same value for the mass of the electron and the muon

right-handed neutrinos.

Finally, we would like to point out that, since the dominant decay mode of the
neutrinos involves the pseudoscalar Higgs fields and their mixing with the axion, a
detailed study of the Higgs spectrum and its possible phenomenological implications

for future experiments would be interesting and instructive.

7 Conclusions

In this paper we have studied the lepton masses and their hierarchy, in the context
of a realistic three-generation Universal Seesaw scenario. In the charged sector, we
have found that the observed hierarchy can be understood in terms of the symme-
try breaking scales of the model. On the other hand, the neutral lepton sector,
at least in the most general case, does not show any mass hierarchy between the
three standard neutrinos. We have however noticed the existence of an interesting
model, which gives a hierarchical spectrum, in the case where an additional as-
sumption is made; namely, that the Majorana- and Dirac-type coupling constants,
generally assumed to be independent to each other, are proportional. This model
is particularly interesting, since its spectrum contains an intermediate-mass Dirac
tau neutrino and two very light Majorana states, which are essentially the electron

and the muon neutrinos. Identifying the 17 keV neutrino with our Dirac state, and
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make use of the bounds on the Peccei-Quinn scale, we find that the mass of the
two light states turns out to be in the right range, required by the MSW solution
of the solar neutrino problem. A cosmologically consistent lifetime for the Simpson
neutrino is obtained through its decay into an axion and the electron neutrino.

8 Appendix

The most general structure for a left-right symmetric Higgs potential consisting of
one left and one right doublet field PL,r, and a singlet field o which under L « R
transforms as ¢ & —o , is [20]:

Vo= A [@len? + @heny] - 2007 - 507 86 + olon)
+ 20 (6L)ohtn) + Aot — 2mio? 1 2o (ahgs — olom),  (a1)

where the parameters A, A and A+T are positive. The spontaneous breaking of the
left-right symmetry may be induced a la Chang-Mohapatra-Parida [23] when the
sigma field acquires a non-vanishing vacuum expectation value x. The minimization
of this potential leads to the following relations for the three vacuum expectation
values vy, vg and x (all chosen to be real) [20):

‘”.% = Mz—:w(ﬁ

vh = M’ +49x, (32)
X' = m'+af,
where

. M -

M = ’ A:
A+T T=E/AoT

" A-T

P

m
_ o =

2% A
In order to obtain the desired hierarchy v, <« vg, the parameter ¥ must be approx-

imately: 4 ~ M?/y, in which case vy ~ 202, Assuming, for simplicity, that the
parameter A — I is of order one, the scale of the cubic-Higgs coupling is:

2
Yr

X (33)

v =

As was shown in Ref.[20], the absolute minimum of the potential corresponds to

the desired hierarchy vj, < vg < y for a wide range of the parameters.
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When one introduces the extra two Higgs doublets with opposite Peccei-Quinn
numbers to ¢ and ¢p, needed for the multigeneration case, the physical Higgs
spectrum resembles the one of a left-right symmetric two-doublet model, apart from
a small mixing between the left and the right sector, and the mixing generated by
the coupling of the o field with the doublets, which will be discussed next.

In order to identify o with the field which breaks the Peccei-Quinn symmetry ala
Dine-Fishler-Srednicki (DFS) [29], the cubic interaction term in the Higgs potential
must be chosen to be of the following form [21):

210 (41t — o) + . s

After spontaneous symmetry breaking, the Higgs fields can be written as:

3 (Reo +iA)
PL(R) = (R)f ’ o= —"F7—""7+1TX, (35)
) O%(ryi T VL(R); V2

where i = 1,2, and we have used the fact that approximately, up to terms of
order ~ vg/x, the axion field, which is the Goldstone boson associated with the
spontaneous breaking of the Peccei-Quinn symmetry, is just the imaginary part of
the o field. Of course, our axion has to be an “invisible” one, which means that
the breaking scale < o >=x = v/2f, lies in the range allowed by astrophysics and
cosmology ®[28]: '

10'°GeV < x < 1.4-10"% GeV. (36)

As one can easily check, by substituting equ.(35) in equ.(34), there is a mixing term

between the axion and the pseudoscalar Higgs fields H? and HY:
L. = V2vA(vpHY + vrH}), (37)

where 2H? = Img$, — Im¢,, and Hf = H? (L < R), corresponding to our choice
VL(Ry1 = VL(R)2- Since we do not expect any dramatic change in the value of the
parameters characterizing the Higgs potential when one considers the multigenera-
tion case, in the evaluation of the diagrams of Figs.1,2 and 4, we have assumed the

same scale for the cubic coupling v as given in equ.(33).
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Figure Captions

Figure 1. Diagrams generating an effective diagonal coupling of the axion to the

ordinary charged fermions of the standard type: (ms/x)fvsfA. As
usual, the “ x ” along a fermion-line denotes a mass insertion, while at
the end of a scalar-line it denotes a vacuum expectation value. fand F
represent ordinary and extra-singlet fermions, respectively. H? and H?
are the two pseudoscalar Higgs fields present in the model.

Figure 2. Diagram generating the amplitude for the decay of the 17 keV Simpson

neutrino. The decay proceeds through the interactions of the singlet
field l\-fg, with which v, forms a single effective Dirac state.

Figure 3. Diagram which generates an extra contribution for the axion coupling

to the second generation fermions.

Figure 4. Diagram which dominates the amplitude for the decay of the right-

handed electron neutrino. N, is a heavy singlet field, degenerate with

VrR.
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Mass [keV] Neutrino Spectrum

L*/K ~ 1077 1y ~ cosOuryp — sinfu,p
Vg @ Vur
L ~17 V34 VIE(COSGVTL-I-SiIIGUEL) + 2 (Nap -~ Nag)

R}/K ~ 3-10° w5 ~ cosfveg — sinfu.p

Vg =X VyuR
R ~ 6-107 Vrg %(cosﬂyfﬁ—ksinﬂyeﬁ) + 2 (N2p + N2g)

K ~ 10° Vg1o0 = % [(N1L “Nm) + (NaL - NaR)]
V1,12 X % [(Nu: + N1R) + (N:;L + Nig)]

Table 1: Neutral lepton spectrum in the “Universal Seesaw Model” for the 17

keV neutrino.
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