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Abstract

This is a pedagogical paper which explains some ideas in cosmology at a level
accessible to undergraduate students. It does not use general relativity, but
uses the ideas of Newtonian cosmology worked out by Milne and McCrea.
The cosmological constant is also introduced within a Newtonian framework.
Following standard quantization procedures the Wheeler-DeWitt equation
in the minisuperspace approximation is derived for empty and non-empty
universes.
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1 Introduction

Some of the modern ideas in cosmology can be explained without the need to
discuss general relativity [Landsberg and Evans (1977)]. The present paper
represents an attempt to do this based on Newtonian mechanics. There is
a need for pedagogical articles which discuss forefront ideas in research, but
also include all the relevant derivations in one place and at an accessible
level. This will be useful for instructors not familiar with cosmology but who
would nevertheless like a summary in a single article that can be used in,
say, a modern physics course. There are also some ideas presented here that
cannot be found in the pedagogical literature. These include a discussion of
how to incorporate the cosmological constant in Newtonian mechanics and a
discussion of the Wheeler-DeWitt equation for flat, open and closed empty
and non-empty universes.

2 Equation of State

In what follows the equation of state for matter and radiation will be needed.
In particular an expression for the rate of change of density, ρ̇, will be needed
in terms of the density ρ and pressure p. (The definition ẋ ≡ dx

dt
, where t is

time, is being used.) The first law of thermodynamics is

dŪ + dW = dQ (1)

where Ū is the internal energy, W is the work and Q is the heat transfer.
Ignoring any heat transfer and writing dW = Fdr = pdV where F is the
force, r is the distance, p is the pressure and V is the volume, then

dŪ = −pdV. (2)

Assuming that ρ is a relativistic energy density means that the energy is
expressed as [Guth and Steinhardt (1989)]

Ū = ρV (3)

from which it follows that

˙̄U = ρ̇V + ρV̇ = −pV̇ (4)

2



where the term on the far right hand side results from equation (2). Writing

V ∝ r3 implies that V̇
V

= 3 ṙ
r
. Thus

ρ̇ = −3(ρ+ p)
ṙ

r
(5)

2.1 Matter

Writing the density of matter as

ρ =
M

4
3
πr3

(6)

it follows that

ρ̇ ≡ dρ

dr
ṙ = −3ρ

ṙ

r
(7)

so that by comparing to equation (5), it follows that the equation of state
for matter is

p = 0. (8)

This is the same as obtained from the ideal gas law for zero temperature.
Recall that in this derivation we have not introduced any kinetic energy, so
we are talking about zero temperature.

2.2 Radiation

The equation of state for radiation can be derived by considering radiation
modes in a cavity based on analogy with a violin string [Kubo (1967)]. For
a standing wave on a string fixed at both ends

L =
nλ

2
(9)

where L is the length of the string, λ is the wavelength and n is a positive
integer (n = 1, 2, 3.....). Radiation travels at the velocity of light, so that

c = fλ = f
2L

n
(10)

where f is the frequency. Thus substituting f = n
2L
c into Planck’s formula

Ū = h̄ω = hf , where h is Planck’s constant, gives

Ū =
nhc

2

1

L
∝ V −1/3. (11)
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Using equation (2) the pressure becomes

p ≡ −dŪ
dV

=
1

3

Ū

V
. (12)

Using ρ = Ū/V , the radiation equation of state is

p =
1

3
ρ. (13)

It is customary to combine the equations of state into the form

p =
γ

3
ρ (14)

where γ ≡ 1 for radiation and γ ≡ 0 for matter. These equations of state are
needed in order to discuss the radiation and matter dominated epochs which
occur in the evolution of the Universe.

3 Velocity and Acceleration Equations

The equation which specifies the speed of recession is obtained by writing
the total energy E as the sum of kinetic plus potential energy terms (and
using M = 4

3
πr3ρ) [Madsen (1995), Roos (1994)]

E = T + Ũ =
1

2
mṙ2 −GMm

r
=

1

2
mr2(H2 − 8πG

3
ρ) (15)

where the Hubble constant H ≡ ṙ
r
, m is the mass of a test particle in the

potential energy field enclosed by a gas of dust of mass M , r is the distance
from the center of the dust to the test particle and G is Newton’s constant.

Recall that the escape velocity is just vescape =
√

2GM
r

=
√

8πG
3
ρr2, so that

the above equation can also be written

ṙ2 = v2
escape − k′ (16)

with k′ ≡ −2E
m

. The constant k′ can either be negative, zero or positive
corresponding to the total energy E being positive, zero or negative. For a
particle in motion near the Earth this would correspond to the particle escap-
ing (unbound), reaching infinity with zero speed (critical case) or returning
(bound) to Earth because the speed ṙ would be greater, equal to or smaller
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than the escape speed vescape. Later this will be analagous to an open, flat
or closed universe. Equation (15) is re-arranged as

H2 =
8πG

3
ρ+

2E

mr2
. (17)

Defining k ≡ − 2E
ms2

and writing the distance in terms of a scale factor a and
a constant length s as r(t) ≡ a(t)s, it follows that ṙ

r
= ȧ

a
and r̈

r
= ä

a
, giving

[Madsen (1995), Roos (1994)]

H2 ≡ (
ȧ

a
)2 =

8πG

3
ρ − k

a2
(18)

which specifies the speed of recession. The scale factor is introduced because
in general relativity it is space itself which expands. Even though this equa-
tion is derived for matter, it is also true for radiation. The same equation is
obtained in general relativity [Islam (1992)]. According to Guth [Guth and
Steinhardt (1989)], k can be rescaled so that instead of being negative, zero
or positive it takes on the values −1, 0 or +1. From a geometric, general
relativistic point of view this corresponds to an open, flat or closed universe.

In elementary mechanics the speed v of a ball dropped from a height r
is evaluated from the conservation of energy equation as v =

√
2gr, where

g is the acceleration due to gravity. The derivation shown above is exactly
analagous to such a calculation. Similarly the acceleration a of the ball is
calculated as a = g from Newton’s equation F = mr̈, where F is the force
and the acceleration is r̈ ≡ d2r

dt2
. The acceleration for the universe is obtained

from Newton’s equation

−GMm

r2
= mr̈. (19)

Again using M = 4
3
πr3ρ and r̈

r
= ä

a
gives the acceleration equation

F

mr
≡ r̈

r
≡ ä

a
= −4πG

3
ρ. (20)

However because M = 4
3
πr3ρ was used, it is clear that this acceleration

equation holds only for matter. In our example of the falling ball instead of
the acceleration being obtained from Newton’s Law, it can also be obtained
by taking the time derivative of the energy equation to give a = dv

dt
= v dv

dr
=

(
√

2gr)(
√

2g 1
2
√
r
) = g. Similarly, for the general case one can take the time

derivative of equation (18) (valid for matter and radiation) [Madsen (1995)]

d

dt
ȧ2 = 2ȧä =

8πG

3

d

dt
(ρa2). (21)
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Upon using equation (5) the acceleration equation is obtained as

ä

a
= −4πG

3
(ρ + 3p) = −4πG

3
(1 + γ)ρ (22)

which reduces to equation (20) for the matter equation of state (γ = 0). The
same equation is obtained in general relativity [Islam (1992), Milne (1934),
McCrea and Milne (1934), Bondi (1961)].

4 Cosmological Constant

In both Newtonian and relativistic cosmology the universe is unstable to
gravitational collapse. Both Newton and Einstein believed that the Universe
is static. In order to obtain this Einstein introduced a repulsive gravitational
force, called the cosmological constant, and Newton could have done exactly
the same thing, had he believed the universe to be finite.

In order to obtain a possibly zero acceleration, a positive term (conven-
tionally taken as Λ

3
) is added to the acceleration equation (22) as

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
(23)

which, with the proper choice of Λ can give the required zero acceleration
for a static universe. Again exactly the same equation is obtained from the
Einstein field equations [Islam (1992)]. What has been done here is entirely
equivalent to just adding a repulsive gravitational force in Newton’s Law.
The question now is how this repulsive force enters the energy equation (18).
Identifying the force from

r̈

r
=
ä

a
≡ Frepulsive

mr
≡ Λ

3
(24)

and using

Frepulsive =
Λ

3
mr ≡ −dŨ

dr
(25)

gives the potential energy as

Ũrepulsive = −1

2

Λ

3
mr2 (26)
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which is just a repulsive simple harmonic oscillator. Substituting this into
the conservation of energy equation

E = T + Ũ =
1

2
mṙ2 −GMm

r
− 1

2

Λ

3
mr2 =

1

2
mr2(H2 − 8πG

3
ρ− Λ

3
) (27)

gives

H2 ≡ (
ȧ

a
)2 =

8πG

3
ρ− k

a2
+

Λ

3
. (28)

Let us comment on the repulsive harmonic oscillator obtained above.
Recall one of the standard problems often assigned to students in mechanics
courses. The problem is to imagine that a hole has been drilled from one side
of the Earth, through the center and to the other side and to show that if a
ball is dropped into the hole, it will execute harmonic motion. The solution
is obtained by noting that whereas gravity is an inverse square law for point
masses M and m separated by a distance r as given by F = GMm

r2 , yet if one
of the masses is a continous mass distribution represented by a density then
F = G4

3
πρmr. The force rises linearly as the distance is increased because

the amount of matter enclosed keeps increasing. Thus the gravitational force
for a continuous mass distribution rises like Hooke’s law and thus oscillatory
solutions are encountered. This sheds light on our repulsive oscillator found
above. In this case we want the gravity to be repulsive, but the cosmological
constant acts just like the uniform matter distribution.

Finally authors often write the cosmological constant in terms of a vac-
uum energy density as Λ ≡ 8πGρvac so that the velocity and acceleration
equations become

H2 ≡ (
ȧ

a
)2 =

8πG

3
ρ− k

a2
+

Λ

3
=

8πG

3
(ρ+ ρvac)−

k

a2
(29)

and
ä

a
= −4πG

3
(1 + γ)ρ+

Λ

3
= −4πG

3
(1 + γ)ρ +

8πG

3
ρvac. (30)

4.1 Einstein Static Universe

Although we have noted that the cosmological constant provides repulsion,
it is interesting to calculate its exact value for a static universe [Atwater
(1974), Adler et al (1975)]. The Einstein static universe requires a = a0 =
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constant and thus ȧ = ä = 0. The case ä = 0 will be examined first. From
equation (23) this requires that

Λ = 4πG(ρ + 3p) = 4πG(1 + γ)ρ. (31)

If there is no cosmological constant (Λ = 0) then either ρ = 0 which is an
empty universe, or p = − 1

3
ρ which requires negative pressure. Both of these

alternatives were unacceptable to Einstein and therefore he concluded that
a cosmological constant was present, i.e. Λ 6= 0. From equation (31) this
implies

ρ =
Λ

4πG(1 + γ)
(32)

and because ρ is positive this requires a positive Λ. Substituting equation (32)
into equation (28) it follows that

Λ =
3(1 + γ)

3 + γ
[(
ȧ

a0
)2 +

k

a2
0

]. (33)

Now imposing ȧ = 0 and assuming a matter equation of state (γ = 0) implies
Λ = k

a2
0
. However the requirement that Λ be positive forces k = +1 giving

Λ =
1

a2
0

= constant. (34)

Thus the cosmological constant is not any old value but rather simply the
inverse of the scale factor squared, where the scale factor has a fixed value
in this static model.

5 Conservation laws

Just as the Maxwell equations imply the conservation of charge, so too do
our velocity and acceleration equations imply conservation of energy. The
energy-momentum conservation equation is derived by setting the covariant
derivative of the energy momentum tensor equal to zero. The same result is
achieved by taking the time derivative of equation (29). The result is

ρ̇+ 3(ρ + p)
ȧ

a
= 0. (35)
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or
d

dt
(ρa3) + p

da3

dt
= 0 (36)

and from equation (14), 3(ρ+ p) = (3 + γ)ρ, it follows that

d

dt
(ρa3+γ) = 0. (37)

Integrating this we obtain

ρ =
A

a3+γ
(38)

where A is a constant given by A ≡ ρ0a
3+γ
0 . This shows that the density falls

as 1
a3 for matter and 1

a4 for radiation as expected.
Later we shall use these equations in a different form as follows. From

equation (35),

ρ′ + 3(ρ + p)
1

a
= 0 (39)

where primes denote derivatives with respect to a, i.e. x′ ≡ dx/da. Alterna-
tively

d

da
(ρa3) + 3pa2 = 0 (40)

so that
1

a3+γ

d

da
(ρa3+γ) = 0 (41)

which is consistent with equation (38)

6 Quantum Cosmology

The discussion of the Wheeler-DeWitt equation in the minisuperspace ap-
proximation [Hartle and Hawking (1983), Kolb and Turner (1990), Atkatz
(1994), Atkatz and Pagels (1982)] is usually restricted to closed (k = +1) and
empty (ρ = 0) universes. Atkatz [Atkatz (1994)] presented a very nice dis-
cussion for closed and empty universes. Herein we consider closed, open and
flat and empty and non-empty universes. It is important to consider the pos-
sible presence of matter and radiation as they might otherwise change the
conclusions. Thus presented below is a derivation of the Wheeler-DeWitt
equation in the minisuperspace approximation which also includes matter
and radiation and arbitrary values of k.
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The Lagrangian is

L = − κ

k3/2
a3[(

ȧ

a
)2 − k

a2
+

8πG

3
(ρ+ ρvac)] (42)

with κ ≡ 3π
4G

. Note that this Lagrangian is not defined for a flat (k = 0)
universe. Also for an open universe (k = −1) the Lagrangian is complex
(k3/2 = −i).

The momentum conjugate to a is

P ≡ ∂L

∂ȧ
= − κ

k3/2
2aȧ. (43)

Substituting L and P into the Euler-Lagrange equation, Ṗ − ∂L
∂a

= 0, equa-
tion (29) is recovered. (Note the calculation of ∂L

∂a
is simplified by using the

conservation equation (39) with equation (14), namely ρ′ = −(3 + γ)ρ/a).
The Hamiltonian H̄ ≡ P ȧ− L is

H̄(ȧ, a) = − κ

k3/2
a3[(

ȧ

a
)2 +

k

a2
− 8πG

3
(ρ+ ρvac)] ≡ 0 (44)

which has been written in terms of ȧ to show explicitly that the Hamiltonian
is identically zero and is not equal to the total energy as before. (Compare
equation (29)). In terms of the conjugate momentum

H̄(P, a) = − κ

k3/2
a3[

k3

4κ2a4
P 2 +

k

a2
− 8πG

3
(ρ+ ρvac)] = 0 (45)

which, of course is also equal to zero. Making the replacement P → −i ∂
∂a

and imposing H̄Ψ = 0 results in the Wheeler-DeWitt equation in the min-
isuperspace approximation for arbitrary k and with matter or radiation (ρ
term) included gives

{− d2

da2
+

9π2

4G2k2
[(a2 − 8πG

3k
(ρ+ ρvac)a

4]}Ψ = 0. (46)

Using equation (38) the Wheeler-DeWitt equation becomes

{− d2

da2
+

9π2

4G2k2
[a2 − 1

k
(
Λ

3
a4 +

8πG

3
Aa1−γ)]}Ψ = 0. (47)

This just looks like the zero energy Schrödinger equation [Kolb and Turner
(1990)] with a potential given by

U(a) =
9π2

4G2k2
[a2 − 1

k
(
Λ

3
a4 +

8πG

3
Aa1−γ)]. (48)
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For the empty Universe case of no matter or radiation (A = 0) the po-
tential U(a) is plotted in Figure 1 for the cases k = +1,−1 respectively
corresponding to closed [Kolb and Turner (1990)] and open universes. It can
be seen that only the closed universe case provides a potential barrier through
which tunneling can occur. The open universe would immediately recollapse.
(Actually for the open universe the Lagrangian is complex, so this discussion
may be meaningless. In either case it is clear that an open universe cannot
arise via quantum tunneling.) This provides a clear illustration of the idea
that only closed universes can arise through quantum tunneling [Atkatz and
Pagels (1982)]. For a flat universe (k = 0), the potential is not defined and
thus this process of quantum tunneling cannot give rise to a flat universe. If
radiation (γ = 1 and A 6= 0) is included then only a negative constant will
be added to the potential (because the term a1−γ will be constant for γ = 1)
and these conclusions about tunneling will not change. The shapes in Figure
1 will be identical except that the whole graph will be shifted downwards by
a constant with the inclusion of radiation. (For matter (γ = 0 and A 6= 0) a
term growing like a will be included in the potential which will only be im-
portant for very small a and so the conclusions again will not be changed.)
To summarize, only closed universes can arise from quantum tunneling even
if matter or radiation is present.

This work was supported by the Wisconsin Space Grant Consortium.
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Figure 1

Wheeler-DeWitt potential for open and closed universe.
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