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In queste brevi Note, essenzialmente a scopi didattici, vogliamo presentare una dimostrazione della ben nota
“Legge dell’Inverso del Quadrato della Distanza” della Gravità Newtoniana, basata essenzialmente su argomenti
“Geometrici”, dimostrazione suggerita dallo stesso Newton e da Colin Maclaurin nella sua esposizione della
filosofia del Genio inglese. Nell’ultima parte, a completamento di quanto esposto in precedenti lavori, presentiamo
infine un ulteriore esempio di “Problema Inverso”, in cui mostriamo come si possano avere orbite ellittiche anche
nel caso di forze centrali di tipo “elastico” dirette verso il loro proprio centro di simmetria.

[In these brief Notes, essentially for didactical purposes, we wish to present a proof of the well known “Inverse-
squared Law for Gravity”, but based only upon “Geometrical” arguments, as suggested by Newton him-self, as well
as by Maclaurin in his exposition of the Newtonian Philosophy. In the last part of the paper, at last, we give a
further example of the so-called “Inverse Problem”, in which is shown how elliptical orbits may also be obtained
in presence of central elastic forces directed towards their own centre of symmetry.]

Vogliamo qui riproporre, essenzialmente per scopi didattici, una dimostrazione basata per lo più su argomenti
geometrici e suggerita dallo stesso Newton [1] nei suoi “Principia Mathematica Philosophiae Naturalis” e da
Maclaurin [2] nella sua esposizione della Filosofia newtoniana1, della ben nota Legge secondo la quale la forza
attrattiva responsabile del moto ellittico dei pianeti risulta essere inversamente porporzionale al quadrato della
loro distanza dal Sole.

Si tratta quindi di risolvere, come diciamo oggi, il relativo “Problema Inverso”2, ovvero quello di cercare il tipo di
Forza attrattiva (centripeta) diretta verso uno dei fuochi, dove è posto il Sole, responsabile delle osservate orbite
ellittiche planetarie. Questo è ciò che costituisce la “PROPOSIZIONE XI - PROBLEMA VI” del LIBRO I dei
“Principia” di Newton [1], nella quale l’Autore deduce per via geometrica che tale forza risulta essere inversamente
proporzionale al quadrato della distanza. Noi abbiamo già fornito una tale dimostrazione, ma basata su metodi
analitici più moderni, in un precedente lavoro [3], con una trattazione simile a quella presentata anche in altri
testi (si veda, per esempio, [6], [7]).

∗email: sranfone@gmail.com ; www.stefano-ranfone.it
1Maclaurin espone questa dimostrazione al punto 10 del Libro III, a pag. 251 della sua Prima Edizione [2] stampata a Londra nel

1748; se ne veda in particolare la Fig. 53, dalla quale è stata derivata la nostra Fig. 1.
2Ai tempi di Newton, e per tutto il Settecento, in realtà questo veniva detto “Problema Diretto”; al contrario, il problema di

trovare l’equazione delle traiettorie dei corpi soggetti a forze assegnate veniva definito “Problema Inverso”. Successivamente si è
preferito invertire questa dicitura.



Consideriamo perciò la traiettoria ellittica di un pianeta, come quella rappresentata in Fig. 1, la cui equazione
cartesiana è data da:

x2

b2
+

(y − a)2

a2
= 1 . (1)

Il Sole sia posto nel fuoco S(0; a + c) , il perielio nel punto P (0; 2 a) , l’afelio in A(0; 0) e gli altri due vertici in
B(b; a) e in D(−b; a) . Siano inoltre vP e vA le velocità del pianeta in P e in A , rispettivamente.

Come noto, la centralità della forza attrattiva verso il Sole in S implica la conservazione del Momento Angolare;
ripetendo quanto già esposto in precedenti lavori[5],[4],[3], detto ST ≡ r il generico raggio vettore del pianeta
T rispetto al Sole S, ed F (r) il modulo della forza attrattiva cercata, dalla Seconda Equazione Cardinale della
Dinamica troviamo che:

dLS
dt

= MS = ST ∧ F = −r ∧ r̂ F (r) = 0 , (2)

da cui si evince infatti la Conservazione del Momento Angolare:

LS = ST ∧mVT = r ∧m (ṙ r̂ + r θ̇ θ̂) = mr2θ̇ k̂ = costante , (3)

essendo m la massa del pianeta T e dove abbiamo utilizzato le consuete notazioni [5], indicando con θ̇ la velocità

angolare e con k̂ = r̂ ∧ θ̂ il versore perpendicolare al piano dell’orbita. Ciò implica la planarità delle traiettorie e
porta direttamente alla ben nota “Seconda Legge di Keplero”, ovvero alla cosiddetta Legge delle Aree, secondo la
quale il raggio vettore di ogni pianeta ST “spazza” sempre aree uguali in tempi uguali. Fatto che è equivalente
ad avere una Velocità Areolare che resta invariata durante il moto. In effetti, come si evince dalla Fig. 2, l’area
infinitesima dA spazzata in un tempo infinitesimo dt è, al primo ordine, data da:

dA =
1

2
r dl =

1

2
r (r dθ) =

r2

2
θ̇ dt , (4)

da cui si ottiene infatti una “Velocità Areolare” costante:

Ȧ =
dA
dt

=
1

2
r2 θ̇ =

LS
2m

= costante . (5)
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Applicando per esempio la Conservazione del Momento Angolare al perielio P e all’afelio A si trova che:

LS = mrA VA = mrP VP , (6)

da cui segue che:

VP
VA

=
rA
rP

. (7)

A questo punto, facendo di nuovo riferimento alla Fig. 1, consideriamo lo spostamento avvenuto in un tempo
infinitesimo δt , sia in prossimità del perielio P che dell’afelio A, che porterà il pianeta T , rispettivamente, nei punti
N ed M dell’ellisse. Naturalmente, qualora non ci fosse stata alcuna attrazione verso il Sole S, il pianeta avrebbe
proceduto il suo moto tangenzialmente con velocità costanti, portandosi rispettivamente nei punti K ed H, tali
che PK = VP δt e AH = VA δt . Ciò significa, evidentemente, che le “cadute” verso il Sole S, rappresentate dai
segmenti KN e HM , sono proprio attribuibili a tale forza attrattiva, che in prima approssimazione può essere
considerata costante durante tali spostamenti infinitesimi, proprio in virtù della particolarità dei punti di perielio
P e di afelio A, per i quali al primo ordine δr = 0 (essendo punti di estremo per r). Di conseguenza, potendo
perciò assumere semplici moti uniformemente accelerati, scriveremo questi spostamenti come:

KN =
FP
2m

δt2 , HM =
FA
2m

δt2 , (8)

dove abbiamo indicato con FP ed FA il valore della forza attrattiva nei rispettivi punti. A questo punto,
partendo dall’afelio A tracciamo un arco (infinitesimo) Am congruente a quello percorso nello stesso tempo δt ,
ma partendo dal perielio P , cioè tale che Am = PN . Poichè la “curvatura” dell’ellisse è, per simmetria, la stessa
in P e in A, ne consegue allora che anche Ah = PK e hm = KN , con entrambi hm ed HM che possono
considerarsi in prima approssimazione paralleli all’asse degli Absidi AP . Di conseguenza possiamo anche scrivere
che:

hm = KN =
FP
2m

δt2 . (9)

Inoltre, dalla Conservazione del Momento Angolare espresso dalle eq.(6) e (7), troviamo che:

PK

AH
=
VP δt

VA δt
=
VP
VA

=
rA
rP

. (10)

Dalle due eq.(8) possiamo allora ottenere il rapporto tra i moduli della forza attrattiva al perielio P e all’afelio A:

hm

HM
=
KN

HM
=

FP
2m

δt2

FA
2m

δt2
=
FP
FA

. (11)

Ma, facendo riferimento alla Fig. 1, vediamo che hm e HM non sono altro che le ordinate (inferiori) y che
corrispondono rispettivamente alle ascisse xh = Ah e xH = AH , ottenibili dall’eq. cartesiana (1) dell’ellisse,
nell’ipotesi |x| � b , avendo considerato spostamenti dagli absidi A e P avvenuti in tempi infinitesimi δt , ipotesi
fondamentale per poter giustificare l’assunzione secondo la quale tutte le forze attrattive (in H, come in h, ovvero
in K) sono parallele tra loro e parallele allo stesso asse degli absidi AP . Scriviamoci dunque la funzione che
corrisponde alla parte inferiore della curva. Dall’eq.(1) troviamo che questa è data da:
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y(x) = a

[
1−

√
1− x2

b2

]
. (12)

Nell’ipotesi |x| � b , dallo sviluppo di Taylor di questa funzione3 si ottiene:

y(x) ' a
[
1−

(
1− x2

2b2

)]
' a

2b2
x2 , (13)

suggerendo che in prossimità dei vertici l’ellisse è approssimabile ad una parabola. Utilizzando questo risultato
nell’eq.(11) troviamo quindi che:

FP
FA

=
hm

HM
=

(
Ah

AH

)2

, (14)

ovvero, in virtù dell’eq.(7), ed essendo Ah = PK = VP δt , e AH = VA δt , otteniamo infine:

FP
FA

=

(
VP δt

VA δt

)2

=

(
VP
VA

)2

=

(
rA
rP

)2

. (15)

Questo risultato dimostra in effetti quanto si voleva, ovvero che nel caso di orbite ellittiche col centro di attrazione
(il Sole) posto in uno dei fuochi, il modulo della forza a cui è soggetto il pianeta T deve necessariamente essere
inversamente proporzionale al quadrato della distanza, come espresso dalla ben nota Formula della Gravitazione
Universale di Newton:

FG = −r̂ GMSmT

r2
. (16)

Si confronti il metodo “geometrico” qui presentato, essenzialmente suggerito da Maclaurin nella sua esposizione
[2] della Filosofia Newtoniana, col metodo “analitico” da noi già presentato in [3]. In tale lavoro, si dimostrava
che la Forza Centrale associata ad una traiettoria (necessariamente piana) descritta in coordinate polari (r, θ)
rispetto al Centro Attrattore O da un’equazione del tipo r(θ) , è data dalla formula:

F (r) =
LO

2

m

[
1

r2
d

dθ

(
1

r2
r′
)
− 1

r3

]
, (17)

dove r′ = dr
dθ . Tale Formula veniva applicata sia al caso esaminato per via Geometrica nella prima parte del

presente lavoro, ovvero al caso delle orbite ellittiche dei pianeti attratti dal Sole posto in uno dei fuochi, che al caso
di traiettorie a spirale del tipo r(θ) = r0 e

θ . Qui, a conclusione di questo lavoro, desideriamo trattare un terzo
caso, interessante anche semplicemente come Esercizio Didattico per i nostri studenti. Vogliamo cioè determinare
il tipo di forza attrattiva responsabile di traiettorie ancora ellittiche, ma nelle quali il centro attrattore sia il centro
di simmetria dell’ellisse, anziché uno dei fuochi come nel caso della Gravitazione Newtoniana.

Per poter applicare la formula (17) a tale caso occorre esprimere in coordinate polari (r, θ) (riferite rispetto al
centro di simmetria O) l’equazione Canonica dell’ellisse:

3Si applica qui lo sviluppo fino al primo ordine in x : (1± x)α ' 1±αx ; si vedano, per esempio, i nostri “Complementi di Analisi
Matematica” [8].
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x2

a2
+
y2

b2
= 1 , (18)

con x = r cos θ e y = r sin θ ; dopo un po’ di algebra ed esplicitando la coordinata radiale r, si trova:

r =
a√

1 + Γ sin2 θ
, (19)

dove per semplicità si è posto Γ = (c/b)2 = (a/b)2 − 1 , essendo c =
√
a2 − b2 la distanza di ciascuno dei fuochi

dal centro di simmetria dell’ellisse. Per derivazione rispetto a θ troviamo che:

r′

r2
= − Γ sin θ cos θ

a
√

1 + Γ sin2 θ
, (20)

da cui, derivando di nuovo, si ottiene:

d

dθ

(
r′

r2

)
= −Γ (1− 2 sin2 θ − Γ sin4 θ)

a (1 + Γ sin2 θ)3/2
; (21)

ciò ci permette di scrivere che:

[
d

dθ

(
r′

r2

)
− 1

r

]
1

r2
= −

(
1 + Γ

a3

)
1√

1 + Γ sin2 θ
= −

(
1 + Γ

a4

)
r . (22)

Utilizzando questo risultato nell’eq.(17), ed esplicitando Γ in termini dei parametri dell’ellisse, si ottiene in
definitiva:

F (r) = − 1

m

(
LO
a b

)2

r ≡ −K r , (23)

indicando che una Forza attrattiva diretta verso il centro di simmetria di tipo lineare, come quella elastica descritta
dalla Legge di Hooke, porta ancora ad orbite ellittiche, ma naturalmente descritte da leggi orarie ben diverse da
quelle caratteristiche del moto dei pianeti soggetti alla Forza di Gravitazione Universale Newtoniana (16).
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